高三数学知识点总结

时间:2025-02-17 07:59:43
高三数学知识点总结

高三数学知识点总结

总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它能够给人努力工作的动力,因此我们需要回头归纳,写一份总结了。那么你知道总结如何写吗?以下是小编精心整理的高三数学知识点总结 ,仅供参考,希望能够帮助到大家。

高三数学知识点总结 1

1.数列的定义、分类与通项公式

(1)数列的定义:

①数列:按照一定顺序排列的一列数.

②数列的项:数列中的每一个数.

(2)数列的分类:

分类标准类型满足条件

项数有穷数列项数有限

无穷数列项数无限

项与项间的大小关系递增数列an+1>an其中n∈N_

递减数列an+1

常数列an+1=an

(3)数列的通项公式:

如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.

2.数列的递推公式

如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.

3.对数列概念的理解

(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的`“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.

(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.

4.数列的函数特征

数列是一个定义域为正整数集N_(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_).

高三数学知识点总结 2

1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。

2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的.都是精华部分。

3、课后复习:通预习一样,也是行之有效的方法。

4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。

5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。

6、建立纠错本:把经常出错的题目集中在一起。

7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。

8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。

高三数学知识点总结 3

不等式的解集:

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

不等式的'判定:

①常见的不等号有“>”“

②在不等式“a>b”或“a

③不等号的开口所对的数较大,不等号的尖头所对的数较小;

④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

任一x?A,x?B,记做AB

AB,BAA=B

AB={x|x?A,且x?B}

AB={x|x?A,或x?B}

Card(AB)=card(A)+card(B)-card(AB)

(1)命题

原命题若p则q

逆命题若q则p

否命题若p则q

逆否命题若q,则p

(2)AB,A是B成立的充分条件

BA,A是B成立的必要条件

AB,A是B成立的充要条件

1.集合元素具有①确定性;②互异性;③无序性

2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法

(3)集合的运算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性质

n元集合的字集数:2n

真子集数:2n-1;

非空真子集数:2n-2

高三数学知识点总结 4

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心。

②棱锥的侧棱与底面所成的'角均相等,则顶点在底面上的射影为底面多边形的外心。

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心。

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心。

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心。

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心。

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径。

[注]:

i、各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥。(×)(各个侧面的等腰三角形不知是否全等)

ii、若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直。

简证:AB⊥CD,AC⊥BD

BC⊥AD。令得,已知则。

iii、空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形。

iv、若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形。

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形。若对角线等,则为正方形。

高三数学知识点总结 5

第一部分集合

(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数

1、映射:注意

①第一个集合中的元素必须有象;

②一对一,或多对一。……此处隐藏10303个字……易遗忘,即使忘记,你也可以翻阅以前的内容重新巩固一遍.

4四层次

1)

基本知识点。含概念、定义、定理、公式等,这是基础,这个不过关,其他免谈。笔者平时先看教科书,就是这个道理。--这部分,虽然重要,但笔者辅导不作重点,只是检查与提醒,因为可自学及问自己老师同学。会这个的人太容易找到了。

2)

数学思想与数学技能。数学思想如方程函数思想、数形结合思想、对称思想、分类讨论思想,化归思想;数学技能如配方、待定系数法等。笔者由于这方面强,故多年不做题或见到陌生题均不慌,因为这些思想能力是深入骨髓的。

3)

数学模型与中间结论。数学模型就是具体题目的解题套路,中间结论可使学生减少解题步骤,加快解题速度,减少出错机会。这些有了2数学思想与数学技能,就能自己推导出来,但要注意总结与积累。

4)

特殊解题技巧。这个要求以上3方面都较强,聪明加灵感,平时善于总结与归纳,看透事物本源,熟能生巧,触类旁通。故对中等生不作过高要求,所谓可遇而不可求。笔者对高考实考试卷的选择与填空,特别是选择,有相当部分,有的试卷甚至一半以上可在题读完后,几秒得出正确答案。凭的就是这个本事。

高三数学知识点总结 13

第一部分集合

(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数

1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法

3、复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的'定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵是奇函数;

⑶是偶函数;

⑷奇函数在原点有定义,则;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;

2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;

3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;

4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。

高三数学知识点总结 14

任一x=A,x=B,记做AB

AB,BAA=B

AB={x|x=A,且x=B}

AB={x|x=A,或x=B}

Card(AB)=card(A)+card(B)—card(AB)

(1)命题

原命题若p则q

逆命题若q则p

否命题若p则q

逆否命题若q,则p

(2)AB,A是B成立的充分条件

BA,A是B成立的必要条件

AB,A是B成立的'充要条件

1、集合元素具有

①确定性;

②互异性;

③无序性

2、集合表示方法

①列举法;

②描述法;

③韦恩图;

④数轴法

(3)集合的运算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性质

n元集合的字集数:2n

真子集数:2n—1;

非空真子集数:2n—2

高三数学知识点总结 15

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的`,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,则有>1?;=1?;<1?.

概括为:作差法,作商法,中间量法等.

3.不等式的性质

(1)对称性:a>b?;

(2)传递性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可开方:a>b>0?(n∈N,n≥2).

复习指导

1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

3.“两条常用性质”

(1)倒数性质:①a>b,ab>0?

③a>b>0,0;④0

(2)若a>b>0,m>0,则

①真分数的性质:(b-m>0);

《高三数学知识点总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式